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Abstract 
This is a study on seasonal climate forecasts for the Asian Monsoon region. The unique 

aspect of this study is that it became possible to use the forecast results from as many as 16 state of 
the art coupled atmosphere-ocean models. A downscaling component, with respect to observed 
rainfall estimates uses data sets from TRMM and a dense rain gauge distriburion; this enables the 
forecasts of each model to be bias corrected to a common 25 km resolution. The downscaling 
statistics for each model, at each grid location is developed during a training phase of the model 
forecasts; the forecasts from all of the member models use the downscaling coefficients of the 
training phase. These forecasts are next used for the construction of a multimodel superensemble. A 
major result of this paper is on the climatology of the model rainfall. From the downscaled 
multimodel superensemble which shows a correlation of nearly 1.0 with respect to the observed 
climatology. This high skill is important for addressing the rainfall anomaly forecasts, which are 
defined in terms of departures from the observed (rather than a model based) climatology. 
 

The second part of this study addresses seasonal climate forecasts of Asian monsoon 
precipitation anomalies. Seasonal climate forecasts over the larger monsoon Asia domain and over 
the regional belts are evaluated. The superensemble forecasts invariably carry the highest skill 
compared to the member models globally and regionally. This relates largely to the presence of large 
systematic errors in models that carry low seasonal prediction skills. Such models carry persistent 
signatures of systematic errors, and their errors are recognized by the multimodel superensemble. 
One of the conclusions of this study is that given the uncertainties in current modeling for seasonal 
rainfall forecasts, post processing of multimodel forecasts, using the superensemble methodology, 
seems to provide the most promising results for the rainfall anomaly forecasts. 

 

1. Introduction 
 

In part 1 of this paper, we addressed the prediction of monsoon rainfall climatology and anomalies 
using a suite of 16 Atmosphere Ocean global coupled models. This paper differs from a similar 
research effort that was carried out previously using 4 atmosphere ocean coupled models 
(Chakraborty and Krishnamurti 2009). The question of forecast sensitivity from increasing the 
number of member models and data lengths is also covered in this study. Our use of multimodel 
forecasts utilizes the cross validation method for forecast data sampling, (Krishnamurti et al. 2006). 
This is necessitated by the small lengths of forecast data strings that were presently available from 
multi models. We make forecasts covering the summer monsoon season for the years 1987 through 
2001. The training phase includes all those seasons that are not being forecasted, thus successively 
the forecast of a given season excludes that season from the training phase. The training phase 
carries out a downscaling (Fig 1) of each monthly and seasonal forecast for each model. This is 
followed by the construction of multimodel superensemble forecasts (Fig 2), which provides weights 
for each grid location and is geographically distributed. Many of the details on resolution, data sets, 
downscaling and superensemble methodology are provided in this study, Kumar and Krishnamurti 
(2010). Due to the very high skill of the superensemble based rainfall climatology, we address 
rainfall anomalies with respect to the observed rainfall climatology. Some past model studies, Gadgil 
and Sajini (1998), defined observed rainfall anomalies with respect to the observed rainfall 
climatology, and the model based anomalies with respect to the model based climatology. That does 

Invited Paper

Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions III, edited by
Tiruvalam N. Krishnamurti, Jhoon Kim, Takashi Moriyama, Proc. of SPIE Vol. 7856,

78560G · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.871078

Proc. of SPIE Vol. 7856  78560G-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/18/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 
 

not appear to be necessary in this study. This study also addresses the minimum number of years of 
forecasts that are needed for equilibrating the spin-up of the growth rate of precipitation during the 
downscaling and the forecast phases of the multimodel superensemble. 

The present study addresses geographical distributions and skills of forecasts of seasonal 
rainfall anomalies. Those are first presented in terms of scatter diagrams. This paper measures the 
skills through RMS errors, the spatial correlations and the equitable threat scores are used for 
forecast evaluations. These skills are evaluated over a large monsoon Asia domain. The member 
models fair rather poorly in predicting such contrasting monsoon regimes. Several of those poor 
forecasts still carry persistent systematic errors; those are capitalized by the multimodel 
superensemble. The dry and wet spells carry opposite signs for the anomalies; the superensemble 
carries a collective bias removal to improve on such extremes compared to what is presently possible 
from the individual member models. 

 

2. Coupled Models and Datasets: 
 

Sixteen coupled atmosphere ocean global coupled model data sets are included in this study. These 
data sets were acquired from personal contacts with the data producers. In Table 1 some details on 
model resolution, physical parameterizations, description of the ocean modeling, years of model runs 
and relevant references are provided. This also includes the number of ensemble forecasts provided 
for each model run. The ensemble mean forecasts from a single model’s several runs are also 
included in this study. These model forecasts are cast at a common horizontal resolution of 
2.5oX2.5o, for the construction of model ensembles. All data sets from multi-models were bi-linearly 
interpolated to this common resolution (0.25oX0.25o) prior to the construction of ensemble 
averaging. The observed rainfall data of APHRODITE is used in this study (Fig 3, Yatagai et al. 
2009). Table 2 shows acronyms used in this study. 
 

3. Forecast over monsoon Asia domain 
 

3.1 Scatter plot of the rainfall over monsoon Asia 
 

The superensmeble carries almost no scatter and all points fall along roughly the 45 degree slope line 
showing that a near perfect climatology is attainable from the construction of the downscaled 
multimodel superensemble (Fig. 4). Next we take all forecast grid points and show a scatter plot of 
the observed versus the predicted rain anomaly for the entire summer season (Fig 5). The 
correlations of the observed to the predicted season long rains for the 16 member models range from 
-0.10 to 0.65. The superensemble is able to elevate the correlation to 0.71. The combination of near 
perfect skills for the climatology, plus these high values for the rainfall anomalies from the 
multimodel superensemble makes it a valuable seasonal prediction product at this stage. The 
implication of these results are very significant, i.e. in an operational forecast environment, at the 
outset as a forecast is issued one might not know which single model might carry the best forecast 
for a coming season, since model forecast skills tend to vary a lot from one forecast to the next, 
however having a superensemble forecast of the rainfall anomaly provides one with some assurance 
of having the best available forecast. 
 

3.2        Seasonal; forecast skill for precipitation over monsoon Asia 
 

The histograms presented in Fig 6, carry a pair of diagrams for the RMS errors and for the 
correlations for the seasonal downscaled forecasts of rains with respect to the observed estimates at 
the 25km resolution. Also included are vertical bars for the downscaled ensemble mean, and for the 
downscaled multimodel superensemble. These pertain to skills for the summer monsoon months of 
June, July and August; the forecasts cover 15 years and are indicated along the abscissa. For the most 
part, the general conclusion that can be drawn is that the multimodel superensemble almost always 
carries the lowest RMS errors and the highest correlations. There are very few exceptions where it 
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might carry a skill close to the best model. The errors for the ensemble mean are almost always 
somewhat larger compared to those of the superensemble. In a real-time framework one can place 
great reliance on the superensemble forecasts, since its performance is consistently better than all 
other models and the ensemble mean. 
 

3.3       Seasonal rainfall anomaly forecasts for a dry monsoon rainfall season 
 

From the sample of 15 years of seasonal forecasts, we selected forecasts for the year 1987 a dry 
monsoon year (Fig 7). Details of the monsoon from each of these two years were presented by 
Krishnamurti et al. (1989). The year 1987 was characterized by very deficient rains over northern 
India with 25 percent below normal rains. The different panels, from top left of fig 3 show the 
seasonal observed rainfall anomalies from the Yatagai et al. (2009) raingauge based data sets, and 
those from the 16 different model forecasts. These are all downscaled model forecasts for the rainfall 
anomalies during the forecasts phase of the multimodel super ensemble. The last two panels of this 
illustration show the results of rainfall anomaly forecasts from the downscaled ensemble mean and 
the downscaled multimodel superensemble. All of these anomalies were calculated with respect to 
the model mean minus the APHRODITE based observed rainfall anomalies. In each of these forecast 
panels on the top right we provide the pattern correlations, i.e. the anomaly correlations, and at the 
bottom right for each panel, the RMS error of the respective forecasts is presented. From an 
examination of these seasonal forecasts we note that many models carry rather low correlations, 
ranging from -0.05 to 0.39 (Fig. 3a). For the ensemble mean and the superensemble, these numbers 
were elevated to values 0.40 and 0.43 respectively. The superensemble also carried the lowest RMS 
error of 1.36; while these values were as high as 2.11 for one of the member models. The dryness 
revealed by the strongest negative values of the rainfall anomalies were present in the forecasts from 
the models NCEP, UH, UKMO, LODY, ECMW and GFDL. This was also reflected by the 
multimodel superensemble. The spatial distributions of low rains during the dry year 1987 were best 
reflected by the multimodel superensemble. Some prominent features in the seasonal rainfall over 
this larger monsoon domain include the below-normal rains over northern India extending north-
northwestward from the east coast of India. Those dry features are best represented by the 
multimodel superensemble. The above normal rains over northeast China are somewhat 
underestimated by the multimodel superensemble, the GFDL model, and the FSU KOR model. Most 
other models fail to predict this feature. The above normal rains of Bangladesh were underestimated 
by most models, except by the BMRC and the FSU models ANR and KOR. Generally, the forecasts 
of individual member models were not consistent from one forecast to the next. 
 

4.     Single model based ensembles versus multimodel superensemble 
 

Several of the single models that are included in our multimodel suite carry many forecasts for each 
start time. The data that were used from such single models, in our study, were the ensemble mean of 
several such runs. Generally such several runs for the same start time are generated by using 
perturbed initial states. In the seasonal climate context some of these different initial states are 
generated by having a lagged start by a few days that still can have data for the same start dates. A 
question is frequently asked, how the results from a single model compare with those of a 
multimodel superensemble. Based on several such comparisons we found that the multimodel 
superensemble is always much superior, in terms of performance skills, compared to a single model 
based ensembles. Fig 12 illustrates such results of RMS errors, where the results for models that 
included 10 or more ensemble members, are included. These seven models go by the names: ANR, 
BMRC, GFDL, KNR, KOR, NCEP and UH respectively. 

In Fig 8 we show the RMS errors, along ordinate) for these 7 models (shown as vertical 
bars), as a function of the 15 years of forecasts along the abscissa. Also shown, in the far right are the 
results from the ensemble mean of all 7 models and for the superensemble. The results that stand out 
are that the multimodel superensemble carries less error for seasonal forecasts of summer monsoon 
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rains over the large Asia domain as compared to the single model based ensembles and their joint 
ensemble means (shown in the last set of bars in the far right). Clearly the superensemble benefits 
from the diversity of physical parameterizations, resolutions, different ocean model formulations, 
different initial states and the different land surface physics.  

 

5. Conclusion 
 

The forecast of seasonal rainfall anomalies, a season in advance, is a major scientific challenge for 
the monsoon world. Known for large droughts, floods and its need for advance information for 
agriculture, many scientific efforts to provide the best of such precipitation forecasts have been made 
e.g., Rajeevan et al. (2006). That progress largely came from a statistical multiple regression 
approach that included a number of predictands. A mix of multimodel based seasonal forecasts and a 
comprehensive downscaling and the construction of superensemble from model outputs is the 
approach followed in this study. 

Much further improvement comes from the construction of the superensemble using the 
cross validation principle, with almost a lack of scatter between the observed and the model 
climatology; and the correlation reaches a value of nearly 1.0. That is not necessary since it is now 
possible to derive a downscaled superensemble based rainfall anomaly with respect to the observed 
climatology; the superensemble based rainfall climatology is very close to the observed climatology. 
Roughly 11 years of past seasonal forecast data sets were needed during the training phase of the 
downscaling and superensemble construction for the stabilization of the statistical weights. We also 
find that further improvements of results, presented in this paper, may be possible if a larger number 
of forecasts are carried out by each member model, in which case lower errors could be achieved 
from the use of a larger number of member models. For a given data length, an optimal number of 
model forecasts provide the least errors, using more models than the optimal number appears to 
degrade the results. We have also included a normalized rainfall anomaly based metric that shows 
the uniquely large improvements for the correlations and RMS errors of the observed versus the 
modeled rainfall anomalies from the superensemble. This study points to the presence of large 
systematic errors in many models that carry poor skills; persistence of such errors enables the 
superensemble to benefit from this feature. Further research on post processing of model results 
would be quite helpful to extract more information from model forecasts and their errors. 
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Fig. 1: Schematic shows the steps involved in Downscaling methodology 

 

 

 
Fig. 2: Schematic shows the steps involved in Synthetic Superensemble forecasts. 
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Fig. 3: Distribution of rainguage stations for monsoon Asia, collected data by the APHRODITE project 
(Yatagai et al., 2009). 
 
 
 

 
Fig. 4: Relation between forecasted and observed precipitation (mm/day, includes results from all grid 
points), over the monsoon Asia region, during JJA, for the precipitation climatology from 16 coupled 
models for the downscaled precipitation at the higher resolution of 0.25oX0.25o. 
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Fig. 5: Scatter plot for JJA Precipitation anomaly (mm/day), over the larger Monsoon Asia region for all 
the member models, ensemble mean EM and the superensemble SSE. The inset numbers at the bottom of 
each panel shows the value of the correlation between the predicted and the observed estimates of the 
rainfall anomalies. 
 
 

 

 
Fig 6: Showing along the ordinate the (a) RMS error (b) Anomaly correlations respectively, for the 
rainfall anomaly over the monsoon Asia region. The abscissa denotes the years. The yearly set of 
histograms carry forecasts for each of the 16 models, all separately identified by a different color. The last 
set of histograms show the 16 year averaged skills. 
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Fig. 7: JJA precipitation anomaly for 1987. First panel shows the observed rainfall anomalies, last two 
panels show the results for the ensemble mean and superensemble, the other panels show the results for 
each of the member models. 
 
 

 
 

Fig 8: The vertical bars shows RMS error (along ordinate) for single model ensemble mean as compared to 
the overall ensemble mean (clear bar) and superensemble (red bar) shown in at far right for each year . Also 
shown in the far right side is the overall average for 15 years. These results pertain to the larger monsoon 
domain. The least RMS error are seen for the superensemble in the far right of each sets of bar. 
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Table 1: Details of sixteen global coupled models used in this study. 
 
Name 
(Institute) 

Atmospheric component Oceanic component Ens. 
membe
r 

Model Resoluti
on 

Initial 
Condition 

Model Resolution Initial 
Conditio
n 

AOR 
(FSU) 

FSUGSM with 
Arakawa-
Schubert 
convection and 
new radiation 
(band model) 

T63L14 ECMWF 
with 
physical 
initializatio
n 

HOPE 
global  

5o 
longitude, 
0.5o-5o 
latitude,  
17 levels 

Coupled 
assimilat
ion 
relaxed 
to 
observed 
SST 

10

KNR 
(FSU) 

FSUGSM with 
Kuo convection 
and new 
radiation 
(emissivity-
absorptivity 
model) 

T63L14 ECMWF 
with 
physical 
initializatio
n 

HOPE 
global  

5o 
longitude, 
0.5o-5o 
latitude,  
17 levels 

Coupled 
assimilat
ion 
relaxed 
to 
observed 
SST 

10

KOR 
(FSU) 

FSUGSM with 
Kuo convection 
and old 
radiation 
(emissivity-
absorptivity 
model) 

T63L14 ECMWF 
with 
physical 
initializatio
n 

HOPE 
global  

5o 
longitude, 
0.5o-5o 
latitude,  
17 levels 

Coupled 
assimilat
ion 
relaxed 
to 
observed 
SST 

10

CFS 
(NCEP) 

GFS T62L64 CFS SST 
forecast 

MOM3 1ox1/3o, 
40 levels 

Ocean 
data 
assimilat
ion 

15

POAMA 
1.5 
(Australia) 

Bureau of 
Meteorology 
Research 
Center 
(BMRC) 
Atmospheric 
Model (BAM3) 

R47L17 From latest 
atmosphere 
and ocean 
conditions 
from 
Global 
Atmospher
ic  
Sampling 
Program 

Australia
n 
Commun
ity Ocean 
Model 2 
(ACOM2
) 

-2ox0.5o-
1.5o, 31 
levels 

From 
ocean 
assimilat
ion that 
was 
based on 
optimum 
interpola
tion (OI) 
techniqu
e. 

10

CERFAC
S 
(France) 

ARPEGE T63L31 ECMWF 
40-yrs Re-
analysis 
(ERA-40)

OPA 8.2 2ox2o, 31 
levels 

Forced 
by ERA-
40 

9

ECMWF 
(Europe) 

IFS T95L40 ERA-40 HOPE-E 1.4ox0.3o-
1.4o, 29 
levels

Forced 
by ERA-
40 

9
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FRCGC 
(SINTEX-
F) 

ECHAM-4 T106L1
9 

NCEP/DO
E 
Reanalysis-
2

OPA 8.2 2o(lon)x2o

cos(lat), 
31 levels 

SST 
nudging 
scheme 

9

GFDL AM2.1 2.5ox2o, 
34 levels

NCEP/DO
E 
Reanalysis-
2

OM3.1 
(MOM4) 

1ox1/3o, 
50 levels 

Ocean 
data 
assimilat
ion 

10

INGV 
 (Italy) 

ECHAM-4 T42L19 Coupled 
AMIP type 

OPA 8.1 2ox0.5o-
1.5o, 31 
levels

Forced 
by ERA-
40 

9

LODYC 
(France) 

IFS T95L40 ERA-40 OPA 8.2 2ox2o, 31 
levels 

Forced 
by ERA-
40 

9

MPI 
(Germany
) 

ECHAM-5 T42L19 Coupled 
run relaxed 
to observed 
SST 

MPI 
Open 
Model 
Interface 
(MPI-
OMI)

2.5ox0.5o-
2.5o, 23 
levels 

Coupled 
run 
relaxed 
to 
observed 
SST 

9

MetFr 
(France) 

ARPEGE T63L31 ERA-40 OPA 8.0 182x152 
GP, 31 
levels

Forced 
by ERA-
40 

9

SNU 
(Seoul 
National 
University
) 

SNU T42L21 NCEP/DO
E 
Reanalysis-
2 

MOM2.2 1ox1/3o, 
32 levels 

SST 
nudging 
scheme 

6

UH  
(Universit
y of 
Hawaii) 

ECHAM4 T31L19 NCEP/DO
E 
Reanalysis-
2

UH 
Ocean  

2ox1o, 2 
levels 

Thermoc
line-
Depth 
nudging 

10

UKMO 
(United 
Kingdom) 

HadAM3 2.5ox3.7
5o, 19 
levels 

ERA-40 GloSea 
OGCM 
Third 
Hadley 
Center 
Coupled 
Ocean-
Atmosph
ere GCM 
(HadCM
3) based

 Forced 
by ERA-
40 

9
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Table 2: Table presents the acronyms for models name and their affiliation with the institute/university. 
 

Acronyms for Model’s Name 
ANR FSU Coupled model with Arakawa-Schubert convection and New Radiation 

(band model) 
BMRC Bureau of Meteorology Research Center, Australia (also POAMA1) 
CERF European Center for Research and Advanced Training in Scientific 

Computation, France (CERFACS) 
ECMW The European Center for Medium range Weather Forecasting, UK 
GFDL Geophysical Fluid Dynamical Lab, USA 
INGV Istituto Nazionale de Geofisica e Vulcanologia, Italy 
LODY Laboratoire d’Océanographie Dynamique et de Climatologie, France 
KNR FSU Coupled model with Kuo convection and New Radiation (band model) 
KOR FSU Coupled model with Kuo convection and Old Radiation (emissivity-

absorptivity model) 
MAXP Max-Planck Institut für Meteorologie, Germany 
METF Centre National de Recherches Météorologiques, Météo-France, France  
NCEP National Center for Environmental Prediction, USA  
SINT Scale INTeraction Experiment-FRCGC 
SNU Seoul National University, South Korea 
UH University of Hawaii, USA 
UKMO The Met Office, UK 

Other Acronyms used in this study 
CRes Coarse Resolution 
DJF December-January-February 
DScl Downscaled 
EM Ensemble Mean 
JJA June-July-August 
MAM March-April-May 
OBS Observation 
SON September-October-November 
SSE Synthetic Superensemble 
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